021-22889554
021-26703715
مشاوره آموزشی رایگان

021-22889554  |  021-26703715 مشاوره آموزشی رایگان

ماجراجویی‌های یک معمار در میان سیاره‌ها

Xavier De Kestelier

Adventures of an interplanetary architect

How will we live elsewhere in the galaxy? On Earth, natural resources for creating structures are abundant, but sending these materials up with us to the Moon or Mars is clunky and cost-prohibitive. Enter architect Xavier De Kestelier, who has a radical plan to use robots and space dust to 3D print our interplanetary homes. Learn more about the emerging field of space architecture with this fascinating talk about the (potentially) not-too-distant future.


تگ های مرتبط :

Creativity, Architecture, Design
فکر کنم ۱۲ ساله بودم که پدرم من را به یک نمایشگاه در مورد فضا در بروکسل برد، که خیلی از اینجا دور نیست. و فکر کنم تقریباً سال ۱۹۸۸ بود، خوب اواخر جنگ سرد بود. و بین آمریکایی‌ها و روس‌ها بر سر آوردن چیزهایی به آن نمایشگاه رقابتی در جریان بود. ناسا یک شاتل فضایی انفجاری بزرگ آورد، ولی روس‌ها ایستگاه فضایی میر را آوردند. در واقع یک نمونه آموزشی بود، و می‌توانستید داخل بروید و همه چیز را بررسی کنید. همان چیز واقعی بود -- جای دکمه‌ها، جای سیم‌ها، محل غذا خوردن فضانوردها، جایی که کار می‌کردند.
و وقتی به خانه برگشتم، اولین کاری که کردم این بود که شروع کردم به کشیدن سفینه‌های فضایی. این‌ها سفینه‌های علمی تخیلی نبودند، نه. در حقیقت ترسیمات فنی بودند. قطعه‌ها و بخش‌هایی از نوع سازه‌ای بودند که می‌تواند از آنها ساخته شود. جای سیم‌ها، جای پیچ‌ها. خوب خوشبختانه، من یک مهندس فضا نشدم، بلکه یک معمار شدم. اینها بعضی از پروژه‌هایی هستند که در یک دهه و نیم اخیر با آنها درگیر بوده‌ام. همه این پروژه‌ها کاملاً با هم فرق دارند، با شکل‌های کاملاً متفاوت، به این دلیل که برای محیط‌های مختلفی ساخته شدند.
محدودیت‌های متفاوتی دارند. و فکر می‌کنم طراحی وقتی جالب می‌شود که محدودیت‌های سختی داشته باشید. اینها پروژه‌هایی در سراسر دنیا بودند. چند سال قبل، این نقشه به اندازه کافی خوب نبود. خیلی کوچک بود. مجبور بودیم این را اضافه کنیم، چون قرار بود برای آژانس فضایی اروپا پروژه‌ای روی ماه انجام دهیم. آنها از ما خواستند به همراه ناسا یک سکونتگاه در ماه طراحی کنیم، و یکی در مریخ، رقابتی برای بررسی سکونت در مریخ. هر وقت به عنوان یک معمار، به مکان دیگری می‌روید
و سعی می‌کنید چیزی طراحی کنید، به معماری محلی نگاه می‌کنید، به نمونه‌هایی که آنجا وجود دارد. در حال حاضر، بر روی ماه، البته این کار سخت است. چون آنجا فقط این وجود دارد. فقط ماموریت‌های آپولو هست. آخرین باری که به آنجا رفتیم، من هنوز به دنیا نیامده بودم، و فقط سه روز آنجا بودیم. خوب برای من، این یک جور پیک نیک طولانی است، اینطور نیست؟ ولی یک سفر نسبتاً گران. الان مشکل اینجاست که وقتی قرار است چیزی بر روی یک سیاره یا یک ماه دیگر بسازید، چطور آن را به آنجا ببرید، چطور آن را به آنجا ببرید. خوب اول از همه،
مثلاً انتقال یک کیلوگرم، به سطح ماه، ۲۰۰٫۰۰۰ دلار هزینه دارد، خیلی گران است. پس می‌خواهید که خیلی سبک باشد. دوم، فضا. فضا محدود است، نه؟ این موشک آریان ۵ است. فضایی که آنجا دارید تقریباً چهار و نیم در هفت متر مربع است، که خیلی زیاد نیست. پس لازم است یک سبک معماری وجود داشته باشد که هم فشرده یا قابل فشرده شدن باشد، و هم سبک. و فکر کنم یکیش را اینجا دارم. این خیلی فشرده، و خیلی سبک است. در واقع،
این را قبلاً ساختم. خوب، یک مشکل دارد، این بادکنک‌ها کاملاً آسیب پذیر هستند. باید از آنها محافظت شود، به ویژه، وقتی به یک محیط خیلی سخت مثل ماه می‌روید. اینطور بهش نگاه کنید. اختلاف دما در یک پایگاه در ماه می‌تواند چیزی تا حدود ۲۰۰ درجه باشد. در یک سمت پایگاه، دما می‌تواند ۱۰۰ درجه سانتیگراد باشد و در سمت دیگر، می‌تواند منفی ۱۰۰ درجه باشد. باید از خودمان در برابر این محافظت کنیم. همچنین ماه هیچ میدان مغناطیسی ندارد، یعنی هر تابشی -- تابش خورشیدی، تابش کیهانی --
به سطح ماه برخورد می‌کند. در مقابل این هم باید از خودمان حفاظت کنیم، باید از فضانوردها محافظت کنیم. و سومی، که قطعاً آخری نیست، ماه هیچ جوّی ندارد. یعنی هر شهاب سنگی که واردش بشود نمی‌سوزد، و به سطح اصابت می‌کند. به همین دلیل است که ماه پر از دهانه‌های آتشفشانی است. از فضانوردها در برابر این هم باید محافظت کنیم. بنابراین ما به چه نوع سازه‌ای نیاز داریم؟ خوب، در واقع بهترین گزینه یک غار است، چون یک غار جرم زیادی دارد، و ما به جرم نیاز داریم. ما به جرم احتیاج داریم تا از خودمان در برابر دما،
در برابر تابش، و در برابر شهاب سنگ‌ها محافظت کنیم. ما این مشکلات را این طور حل کردیم. در واقع همینطور که می‌بینید ما قسمت آبی را داریم. این مثل یک بالون برای پایگاه ما در ماه است. فضای بسیار زیادی برای زندگی و آزمایشگاه فرآهم می‌کند، و یک سیلندر دارید که به آن متصل شده، و تمام ساختارهای پشتیبان را در خود دارد، تمام وسایل پشتیبان حیات و همچنین دریچه هوا. و در بالای آن، یک سازه داریم، یک سازه گنبدی شکل، که از ما محافظت می‌کند، و جرم زیادی در خود دارد. این مواد اولیه را از کجا بیاوریم؟
آیا قرار است بتن و سیمان را از زمین به ماه ببریم؟ خوب البته که نه، چون بیش از اندازه سنگین است. خیلی پرهزینه است. بنابراین می‌رویم و از مواد موجود در ماه استفاده می‌کنیم. مواد محلی چیزهایی هستند که در زمین هم با آن سر و کار داریم. هر جایی که ما ساخت و ساز می‌کنیم یا در هر کشوری، نگاه می‌کنیم ببینیم مواد محلی اینجا چه چیزهایی هستند. در مورد ماه مشکل این است که مواد محلی چه هستند؟ خوب، خیلی زیاد نیستند. در حقیقت، فقط یک ماده داریم. خاک ماه. یا اسم جالب و علمی آن، ریگولیت (سنگ پوش)، ریگولیت ماه. خوبی آن این است که همه جا هست، نه؟
سطح از آن پوشیده شده است. از ۲۰ سانتی‌متر تا چند متر، همه جا. اما چطور می‌خواهیم با آن ساختمان بسازیم؟ خوب، از یک چاپگر سه بعدی استفاده می‌کنیم. اگر از هر کدام از شما بپرسم که چاپگر سه بعدی چیست، احتمالاً همه شما به چیزی به این اندازه فکر می‌کنید که چیزهایی تقریباً به این اندازه چاپ می‌کند. خوب البته قرار نیست من یک چاپگر سه بعدی خیلی بزرگ به ماه ببرم که پایگاه ماهم را چاپ کنم. من می‌خواهم از یک وسیله خیلی کوچک‌تر استفاده کنم، چیزی شبیه به این. این یک وسیله کوچک است، یک روبات سیار کوچک، که یک بیل کوچک دارد، و ریگولیت را به پایگاه می‌آورد
و سپس یک لایه نازک از ریگولیت را می‌ریزد، و بعد روباتی خواهیم داشت که لایه به لایه آن را محکم می‌کند، تا وقتی که بعد از چند ماه، کل پایگاه ساخته شود. ممکن است متوجه شده باشید که این سازه‌ای کاملاً خاص است که چاپ می‌کنیم، و نمونه کوچکی اینجا دارم، این یک سازه اسفنجی سلولی نام دارد. کاملاً طبیعی به نظر می‌رسد. دلیل اینکه ما از این به عنوان قسمتی از سازه پوسته استفاده می‌کنیم این هست که فقط به سفت کردن بخش‌های مشخصی نیاز داریم، یعنی باید چسب کمتری از زمین بیاوریم،
و خیلی سبک‌تر می‌شود. حالا -- رویکرد طراحی چنین چیزی و سپس پوشاندن آن با یک گنبد محافظ را در پروژه مریخ هم انجام دادیم. اینجا می‌بینید، سه تا گنبد. و چاپگرها را می‌بینید که این سازه‌های گنبدی را چاپ می کنند. بین مریخ و ماه یک فرق خیلی بزرگ هست، بگذارید توضیح بدهم. این نمودار به شما مقیاس اندازه زمین و ماه، و فاصله واقعی بین آنها را نشان می‌دهد، تقریباً ۴۰۰٫۰۰۰ کیلومتر. اگر بخواهیم به مریخ برویم، فاصله مریخ از زمین --
این تصویر توسط مریخ پیمای کنجکاوی از زمین گرفته شده. یک نقطه خیلی کوچک می‌بینید که زمین است، ۴۰۰ میلیون کیلومتر دورتر. مشکل این مقدار فاصله این است که تقریباً هزار برابر فاصله زمین از ماه است، خیلی دور است، ولی هیچ ارتباط رادیویی، مثلاً، با مریخ پیمای کنجکاوی وجود ندارد. پس من نمی‌توانم از زمین آن را هدایت کنم. نمی‌توانم بگویم، «اوه، مریخ پیما، برو به چپ،» چون ۲۰ دقیقه طول می‌کشد که این سیگنال به مریخ برسد. بعد ممکن است مریخ پیما به چپ برود، و ۲۰ دقیقه دیگر طول بکشد که بتواند به من بگوید، «آره، من رفتم چپ.» به دلیل این فاصله،
مریخ پیماها و روبات‌ها باید به صورت خودکار کار کنند. تنها مسئله این است که ماموریت‌های مریخ ریسک بالایی دارند. همین چند هفته پیش هم این را دیدیم. اگر نیمی از محموله به مریخ نرسد چه می‌شود. چه کار کنیم؟ خوب، به جای ساختن فقط یک یا دو روبات، مثل کاری که در ماه کردیم، صدها روبات خواهیم ساخت. کمی شبیه خاکریز موریانه‌هاست، می‌دانید؟ موریانه‌ها، اگر نصف گروه موریانه‌ها را برداریم، آنها هنوز قادر هستند که خاکریز را بسازند. ممکن است کمی بیشتر طول بکشد.
اینجا هم همینطور است. اگر نیمی از مریخ‌پیماها یا روبات‌ها به مقصد نرسند، خوب بیشتر طول می‌کشد، ولی هنوز می‌توانید انجامش دهید. اینجا ما حتی سه مریخ پیمای مختلف داریم. در پشت، دستگاه حفاری را می‌بینید. واقعاً در حفر ریگولیت ماهر است. سپس انتقال دهنده را داریم، که برای برداشتن ریگولیت و آوردنش به سازه عالی است. و در آخر، این روبات‌های کوچک با پاهای کوتاه، لازم نیست زیاد حرکت کنند. کار آنها این است که روی یک لایه از ریگولیت بنشینند و با امواج مایکرو آنها را به بچسبانند، و سازه گنبد را لایه به لایه بسازند.
الان -- ما همچنین می‌خواهیم آن را امتحان کنیم، پس به یک سفر جاده‌ای رفتیم، و دسته روبات‌های خودمان را ساختیم. بفرمایید. ما ده تا از این روبات‌ها ساختیم. این یک دسته کوچک است. و شش تُن شن برداشتیم، و امتحان کردیم که چطور این روبات‌های کوچک خواهند توانست شن را به اطراف منتقل کنند، در این مورد، شن زمین. و از راه دور کنترل نمی‌شدند. خوب؟ هیچکس به آنها نمی‌گفت برو چپ، برو راست، یا به آنها مسیر از پیش تعیین شده نمی‌داد. نه، به آنها یک کار محول شد: شن را از این ناحیه به آن ناحیه منتقل کنند.
و اگر با یک مانع مواجه شدند، مثلاً یک صخره، خودشان باید راه را پیدا می‌کردند. یا اگر با یک روبات دیگر روبرو شدند، باید می‌توانستند تصمیم گیری کنند. یا حتی اگر نیمی از آنها از کار بیفتند، یا باتری آنها تمام شود، هنوز باید قادر باشند کارشان را تمام کنند. من در مورد نسخه اضافی صحبت کردم. ولی این فقط در مورد روبات‌ها نبود. در مورد محل سکونت هم بود. ما در پروژه مریخ تصمیم گرفتیم سه گنبد بسازیم، به این خاطر که اگر یکی از آنها به مقصد نرسید، دوتای دیگر هنوز بتوانند یک پایگاه بسازند، و عمدتاً به این دلیل بود که هر کدام از گنبدها
در واقع یک سیستم پشتیبانی از حیات در کف خود دارند، تا بتوانند به صورت مستقل کار کنند. خوب از جهاتی، ممکن است فکر کنید که دیوانگی است. شما به عنوان یک معمار، چرا باید با موضوع فضا درگیر شوید؟ به این دلیل که زمینه‌ای چنین فنی است. راستش، من کاملاً قانع شدم که با یک دید خلاق یا از دید طراحی، می‌توانید مسائل واقعاً مشکل و دارای محدودیت‌های زیاد را حل کنید. و من واقعاً احساس می‌کنم جایی برای طراحی و معماری در پروژه‌هایی مثل سکونت در میان سیاره‌ها وجود دارد. متشکرم. (تشویق)
I must have been about 12 years old when my dad took me to an exhibition on space, not far from here, in Brussels. And the year was about -- I think it was 1988, so it was the end of the Cold War. There was a bit of an upmanship going on between the Americans and the Russians bringing bits to that exhibition. NASA brought a big blow-up space shuttle, but the Russians, they brought a Mir space station. It was actually the training module, and you could go inside and check it all out. It was the real thing -- where the buttons were, where the wires were,
where the astronauts were eating, where they were working. And when I came home, the first thing I did, I started drawing spaceships. Now, these weren't science fiction spaceships, no. They were actually technical drawings. They were cutaway sections of what kind of structure would be made out of, where the wires were, where the screws were. So fortunately, I didn't become a space engineer, but I did become an architect. These are some of the projects that I've been involved with over the last decade and a half. All these projects are quite different, quite different shapes,
and it is because they are built for different environments. They have different constraints. And I think design becomes really interesting when you get really harsh constraints. Now, these projects have been all over the world. A few years ago, this map wasn't good enough. It was too small. We had to add this one, because we were going to do a project on the Moon for the European Space Agency; they asked us to design a Moon habitat -- and one on Mars with NASA, a competition to look at a habitation on Mars.
Whenever you go to another place, as an architect and try to design something, you look at the local architecture, the precedents that are there. Now, on the Moon, it's kind of difficult, of course, because there's only this. There's only the Apollo missions. So last that we went there, I wasn't even born yet, and we only spent about three days there. So for me, that's kind of a long camping trip, isn't it, but a rather expensive one. Now, the tricky thing, when you're going to build on another planet or a moon,
is how to get it there, how to get it there. So first of all, to get a kilogram, for example, to the Moon's surface, it will cost about 200,000 dollars, very expensive. So you want to keep it very light. Second, space. Space is limited. Right? This is the Ariane 5 rocket. The space you have there is about four and a half meters by seven meters, not that much. So it needs to be an architectural system that is both compact, or compactable, and light, and I think I've got one right here.
It's very compact, and it's very light. And actually, this is one I made earlier. Now, there's one problem with it, that inflatables are quite fragile. They need to be protected, specifically, when you go to a very harsh environment like the Moon. Look at it like this. The temperature difference on a Moon base could be anything up to 200 degrees. On one side of the base, it could be 100 degrees Celsius and on the other side, it could be minus 100 degrees.
We need to protect ourselves from that. The Moon also does not have any magnetic fields, which means that any radiation -- solar radiation, cosmic radiation -- will hit the surface. We need to protect ourselves from that as well, protect the astronauts from that. And then third, but definitely not last, the Moon does not have any atmosphere, which means any meteorites coming into it will not get burned up, and they'll hit the surface. That's why the Moon is full of craters. Again, we need to protect the astronauts from that.
So what kind of structure do we need? Well, the best thing is really a cave, because a cave has a lot of mass, and we need mass. We need mass to protect ourselves from the temperatures, from the radiation and from the meteorites. So this is how we solved it. We have indeed the blue part, as you can see. That's an inflatable for our Moon base. It gives a lot of living space and a lot of lab space, and attached to it you have a cylinder, and that has all the support structures in, all the life support and also the airlock.
And on top of that, we have a structure, that domed structure, that protects ourselves, has a lot of mass in it. Where are we going to get this material from? Are we going to bring concrete and cement from Earth to the Moon? Well, of course not, because it's way too heavy. It's too expensive. So we're going to go and use local materials. Now, local materials are something we deal with on Earth as well. Wherever we build or whatever country we build in, we always look at, what are the local materials here? The problem with the Moon is, what are the local materials?
Well, there's not that many. Actually, we have one. It's moondust, or, fancier scientific name, regolith, Moon regolith. Great thing is, it's everywhere, right? The surface is covered with it. It's about 20 centimeters up to a few meters everywhere. But how are we going to build with it? Well, we're going to use a 3D printer. Whenever I ask any of you what a 3D printer is, you're probably all thinking, well, probably something about this size and it would print things that are about this size. So of course I'm not going to bring a massive 3D printer to the Moon
to print my Moon base. I'm going to use a much smaller device, something like this one here. So this is a small device, a small robot rover, that has a little scoop, and it brings the regolith to the dome and then it lays down a thin layer of regolith, and then you would have the robot that will solidify it, layer by layer, until it creates, after a few months, the full base. You might have noticed that it's quite a particular structure that we're printing, and I've got a little example here.
What we call this is a closed-cell foam structure. Looks quite natural. The reason why we're using this as part of that shell structure is that we only need to solidify certain parts, which means we have to bring less binder from Earth, and it becomes much lighter. Now -- that approach of designing something and then covering it with a protective dome we also did for our Mars project. You can see it here, three domes. And you see the printers printing these dome structures.
There's a big difference between Mars and the Moon, and let me explain it. This diagram shows you to scale the size of Earth and the Moon and the real distance, about 400,000 kilometers. If we then go to Mars, the distance from Mars to Earth -- and this picture here is taken by the rover on Mars, Curiosity, looking back at Earth. You kind of see the little speckle there, that's Earth, 400 million kilometers away. The problem with that distance is that it's a thousand times the distance of the Earth to the Moon, pretty far away,
but there's no direct radio contact with, for example, the Curiosity rover. So I cannot teleoperate it from Earth. I can't say, "Oh, Mars rover, go left," because that signal would take 20 minutes to get to Mars. Then the rover might go left, and then it will take another 20 minutes before it can tell me, "Oh yeah, I went left." So the distance, so rovers and robots and going to have to work autonomously. The only issue with it is that missions to Mars are highly risky. We've only seen it a few weeks ago.
So what if half the mission doesn't arrive at Mars. What do we do? Well, instead of building just one or two rovers like we did on the Moon, we're going to build hundreds of them. And it's a bit like a termite's mound, you know? Termites, I would take half of the colony of the termites away, they would still be able to build the mound. It might take a little bit longer. Same here. If half of our rovers or robots don't arrive, well, it will take a bit longer, but you will still be able to do it. So here we even have three different rovers.
In the back, you see the digger. It's really good at digging regolith. Then we have the transporter, great at taking regolith and bringing it to the structure. And the last ones, the little ones with the little legs, they don't need to move a lot. What they do is they go and sit on a layer of regolith and then microwave it together, and layer by layer create that dome structure. Now -- we also want to try that out, so we went out on a road trip, and we created our own swarm of robots.
There you go. So we built 10 of those. It's a small swarm. And we took six tons of sand, and we tried out how these little robots would actually be able to move sand around, Earth sand in this case. And they were not teleoperated. Right? Nobody was telling them go left, go right, or giving them a predescribed path. No. They were given a task: move sand from this area to that area. And if they came across an obstacle, like a rock, they had to sort it out themselves. Or they came across another robot,
they had to be able to make decisions. Or even if half of them fell out, their batteries died, they still had to be able to finish that task. Now, I've talked about redundancy. But that was not only with the robots. It was also with the habitats. On the Mars project, we decided to do three domes, because if one didn't arrive, the other two could still form a base, and that was mainly because each of the domes actually have a life support system built in the floor, so they can work independently. So in a way, you might think, well, this is pretty crazy.
Why would you, as an architect, get involved in space? Because it's such a technical field. Well, I'm actually really convinced that from a creative view or a design view, you are able to solve really hard and really constrained problems. And I really feel that there is a place for design and architecture in projects like interplanetary habitation. Thank you. (Applause)