021-22889554
021-26703715
مشاوره آموزشی رایگان

021-22889554  |  021-26703715 مشاوره آموزشی رایگان

برای تفکر پیوندی آماده باشید

Ray Kurzweil

Get ready for hybrid thinking

Two hundred million years ago, our mammal ancestors developed a new brain feature: the neocortex. This stamp-sized piece of tissue (wrapped around a brain the size of a walnut) is the key to what humanity has become. Now, futurist Ray Kurzweil suggests, we should get ready for the next big leap in brain power, as we tap into the computing power in the cloud.


تگ های مرتبط :

AI, Brain, Cloud
اجازه بدید داستانی رو براتون تعریف کنم که به ۲۰۰ میلیون سال پیش برمی گرده. داستانی درباره ی نئوکورتس؛ که به معنای "قشر جدید" است. بنابراین در پستانداران ابتدایی؛ چون فقط پستانداران نئوکورتکس دارند؛ موجوداتی مثل جوندگان، نئوکورتکس به اندازه ی یک تمبر و باریکی آن بود، و نقش یک پوشش نازک را اطراف مغز آنها که به اندازه ی یک گردو بود ایفا می کرد. با این حال قادر به نوع جدیدی از تفکر بود. به جای رفتارهای ثابتی که حیوانات غیر پستاندار داشتند، می توانست رفتارهای جدیدی به وجود آورد.
بنابراین وقتی موشی در حال فرار از یک شکارچی بوده، و می بینید مسیرش بسته است، سعی می کند راه حل جدیدی ابداع کند. که ممکن است فایده داشته باشد و یا خیر. اما اگر فایده داشته باشد، موش آن را به خاطر می سپارد و از آن به بعد یک رفتار جدید دارد که می تواند مانند یک ویروس در جامعه ی موش ها پخش شود. موش دیگری که شاهد این جریان است می گوید: " هی، این خیلی هوشمندانه ست که اون سنگ رو دور بزنیم." و او هم همان رفتار جدید را در پیش می گیرد. حیوانات غیر پستاندار نمی توانند هیچ کدام از این کارها را انجام دهند.
آنها رفتارهای ثابتی دارند. آن موجودات می توانستند رفتارهای جدیدی بیاموزند، اما نه در یک دوره ی حیات، بلکه شاید در طول هزاران دوره زندگی که شامل یک رفتار ثابت جدید می شد. دویست میلیون سال پیش این کاملاً خوب بود. محیط زیست بسیار آرام تغییر می کرد ممکن بود ده هزار سال طول بکشد تا یک تغییر محیط زیستی قابل توجه انجام شود و در این دوره ی زمانی، ممکن بود رفتار جدیدی نیز تکامل پیدا کند. تا اینجا همه چیز خوب پیش می رفت، اما ناگهان اتفاقی رخ داد. شصت و پنج میلیون سال پیش
تغییری ناگهانی و خشونت آمیز در محیط زیست اتفاق افتاد. ما آن را رویداد انقراض کرتاسه می نامیم. به همین دلیل بود که دایناسورها منقرض شدند. آن موقع بود که ۷۵ درصد از حیوانات و گونه های گیاهی منقرض شدند. و در آن زمان پستانداران از شرایط اقلیمی پیشی گرفتند و به تکامل بیولوژیکی و تغییرشکل دهنده گفتند: " هممم، این نئوکورتکس خیلی چیز خوبیه." و شروع به رشد دادن آن کردند. پستانداران بزرگتر شدند، مغزشان به سرعت بزرگتر شد، و نئوکورتکس از آن هم سریعتر رشد کرد و این چین خوردگی های مشخص را توسعه داد تا
سطح خود را افزایش دهد. اگر نئوکورتکس یک انسان را بگیرید و آن را باز کنید، به اندازه ی یک دستمال سفره خواهد بود، و هنوز هم ساختار نازکی دارد، که به نازکی همان دستمال سفره است. با این وجود دارای شیارها و پیچ خوردگی های فراوانی ست که در حال حاضر ۸۰ درصد مغز ما را شامل می شود و آنجا قسمتی است که ما تفکر می کنیم و ضمناً یک تبدیل کننده ی بزرگ است. ما هنوز آن مغز قدیمی را داریم که مُحرِّک ها و انگیزه های ما را فراهم می کند. ممکن است من محرکی برای پیروزی داشته باشم
در این صورت نئوکورتکس آن را تبدیل می کند و به شکلِ نوشتن یک شعر، یا ساخت یک برنامه، و یا سخنرانی TED در می آورد. و این واقعاً همان کاری است که نئوکورتکس انجام می دهد. پنجاه سال پیش من مقاله ای نوشتم درباره ی اینکه مغز چطور عمل می کند، و آن را به صورت مجموعه ای از ماژول ها توصیف کردم. هر ماژول می تواند کارهایی را با الگویی مشخص انجام دهد. می تواند الگویی را بیاموزد. می تواند الگویی را به خاطر بسپارد. می تواند الگویی را اجرا کند. و این ماژول ها در سلسله مراتب هایی سازماندهی شدند، و ما این سلسله مراتب را با تفکر خودمان به وجود آوردیم.
در واقع پنجاه سال پیش چیزهای بسیار کوچکی وجود داشت که ادامه دهیم. این کار باعث شد پرزیدنت جانسون را ملاقات کنم. من در این باره پنجاه سال فکر کردم، و یک سال و نیم پیش کتابی منتشر کردم با نامِ " چگونه یک ذهن ایجاد کنیم " که مبحثی مشابه دارد. در حال حاضر شواهد زیادی موجود است. میزان اطلاعاتی که ما از علوم اعصاب درباره ی مغز به دست می آوریم هرسال دوبرابر می شود. وضوح فضایی ِ اسکن مغز از همه ی انواع هرسال دوبرابر می شود. اکنون ما می توانیم درون یک مغز زنده را ببینیم،
و اتصالات اعصاب منفرد را شاهد باشیم. اتصال در زمان واقعی، شلیک در زمان واقعی است. ما می توانیم مغز شما را در حالی که افکارتان را پدید می آورد ببینیم می توانیم ببینیم که افکار شما مغز شما را پدید می آورد که واقعاً کلیدی برای فهمیدن نحوه ی کار آن است. اجازه بدید به طور خلاصه نحوه ی کار اون رو توضیح بدم. من این ماژول ها رو شمرده ام. ما حدود ۳۰۰ میلیون ماژول داریم و آنها را در سلسله مراتب هایی میسازیم. مثال ساده ای براتون می زنم. من تعداد زیادی ماژول دارم که می تونند خط افقی بین A بزرگ رو تشخیص بدهند. و این تنها چیزی هست که بهش اهمیت می دهند.
یک آهنگ زیبا که می تونیم بنوازیم، یک دختر زیبا که با اون قدم می زنیم، اونها اهمیتی نمی دهند. بلکه فقط یک خط افقی بین A رو می بینند، هیجان زده می شوند و می گویند: " خط افقی" و سپس با اطمینان زیاد پیامی را از طریق خروجی آکسون ارسال می کنند که به مرحله ی بعد می رود. این لایه ها در سطوح مفهومی سازماندهی شده اند و هر لایه از دیگری انتزاعی تر است. بنابراین لایه ی بعدی می گوید:« A بزرگ » سپس به لایه ی بالاتری می رود که می گوید:« Apple» اطلاعات به همین ترتیب پایین می روند. اگر شناسنده کلمه ی Apple حروف A-P-P-L را ببیند، با خود می گوید:« همم،فکر می کنم به احتمال زیاد جای یک E خالیه."
و سپس سیگنالی به تمام شناسنده های E می فرستد با این مضمون که:« به دنبال یک E باشید، فکر می کنم به زودی بیاد" شناسنده های E متمرکز خواهند شد و یک چیز نامفهومی که می تواند E باشد را می بینند. در حالت عادی شما به این شکل فکر نمی کنید، اما ما انتظار یک E را داریم، که به اندازه ی کافی خوب است، و بله، من یک E را دیدم، آن موقع شناسنده apple می گوید: «آره، من Apple رو دیدم.» پنج سطح بالاتر می رویم، و حال شما در مرتبه ی بالای این سلسله مراتب هستید، که به چندین حس تقسیم می شود
و ممکن است ماژولی داشته باشید که یک پارچه ی خاص را ببیند، صدای خاصی را بشنود و عصر خاصی را حس کند و سپس بگوید:« همسرم وارد اتاق شد.» ده مرتبه بالاتر بروید، و آنگاه در بالاترین مرتبه هستید. احتمالاً به قشر قدامی (پیشانی) رسیدید و ماژول هایی در آنجا دارید که می گویند:« این خنده داره، این جالبه. او زن زیباییه.» ممکن است فکر کنید که اینها خیلی پیچیده هستند، اما آنچه واقعا پیچیده است، سلسله مراتب زیر آنهاست. دختر 16 ساله ای هست که یک بار جراحی مغز داشته، و او هنگام جراحی هوشیار بود زیرا جراحان
می خواستند با او حرف بزنند. شما می توانید این کار را انجام دهید چون هیچ گیرنده ی دردی در مغز وجود ندارد. و هنگامی که آنها نقاط بسیار کوچکی از نئوکورتکس او را تحریک می کردند، که در اینجا با رنگ قرمز نشان داده شده، آن دختر می خندید. به همین دلیل آنها ابتدا فکر کردند که نوعی از واکنش خنده را تحریک کردند اما اینطور نبود. آنها به سرعت فهمیدند که نقطه ای را در مغز او پیدا کردند که طنز را تشخیص می دهد و وقتی جراحان این نقطه را تحریک می کردند، آن دختر همه چیز را خنده دار می دید. " شما آقایون که اونجا ایستادید خیلی خنده دار هستید"
این نظر معمولی او بود، اما آنها خنده دار نبودند، نه هنگام جراحی. پس امروزه ما چطور عمل می کنیم؟ خب، کامپیوترها در حال یادگیری زبان انسان به کمک تکنیک هایی هستند که مشابه نئوکورتکس می باشند. من الگوریتم آن را توضیح دادم، که مشابه چیزی است که مدل سلسله مراتبی پنهان مارکوف نامیده می شود، چیزی که من از ۱۹۹۰ روی آن کار می کنم. "جئوپاردی" یک بازی بسیار گسترده ی زبان طبیعی است و واتسون( کامپیوتر شرکت کننده در بازی ) بیشترین امتیاز را در مقابل دو نفر از بهترین بازیکنان به دست آورد.
کامپیوتر توانست این سوال را دریافت کند: " یک سخنرانی طولانی و خسته‌کننده توسط یک کیک کرِم‌دار هوس‌انگیز " و به سرعت پاسخ داد:« خامه ناطق دیگر چیست؟» و جِنینگ و شرکت کننده ی دیگر نتوانستند به جواب برسند. این یک مثال کاملا پیچیده از این است که کامپیوترها زبان انسان را درک می کنند و دانش آن را با خواندن ویکی پدیا و دانشنامه های دیگر به دست می آوردند. پنج یا ده سال بعد، موتورهای جستجو دیگر فقط به دنبال لینک ها و ترکیب های یک کلمه نمی گردند، بلکه واقعاً درک می کنند.
مطالعه برای درک میلیاردها صفحه در وب و در کتاب ها. بنابراین هنگامی که قدم می زنید، گوگل پنجره ای باز خواهد کرد و می گوید:«می دونی، مری، یک ماه پیش به من ابراز نگرانی کرده بودی که مکمل گلوتاتیون تو به بافت های داخلی مغز نمیرسه. خب، تحقیقات جدیدی که همین سیزده ثانیه ی پیش منتشر شد راه حلی برای رفع این مشکل و روش جدیدی برای دریافت گلوتاتیون ارائه کرده. بذار خلاصه اش رو بگم.» ۲۰ سال بعد، ما نانوروبات ها را خواهیم داشت، چون یکی دیگر از روندهای رو به رشد، کوچکتر شدن تکنولوژی است.
نانوروبات ها از طریق عروق وارد مغز ما می شوند و نئوکورتکس ما را به یک نئوکورتکس مصنوعی در ابر متصل می کنند که باعث گسترش نئوکورتکس ما می شود. می خواهم بگویم که امروزه شما کامپیوتری در تلفن خود دارید، اما اگر به ده هزار کامپیوتر تنها در چند ثانیه نیاز داشته باشید، تا یک جستجوی پیچیده را انجام دهید می توانید در عرض یک یا دو ثانیه در ابر به آن دسترسی پیدا کنید. در سال ۲۰۳۰ اگر به نئوکورتس اضافی احتیاج داشته باشید می توانید مستقیماً از طریق مغز خود به آن که در ابر قرار دارد متصل شوید.
بنابراین من در حال قدم زدن هستم و می گویم: »" اوه، کریس اندرسون اینجاست. داره میاد سر راه من. بهتره حرفی بزنم که هوشمندانه باشه. سه ثانیه وقت دارم. ۳۰۰ میلیون ماژول در نئوکورتکس من نمی توانند این کار رو انجام بدند. به یک میلیارد دیگراحتیاج دارم.» و می توانم در ابر به آن دسترسی پیدا کنم. آن زمان تفکر ما، پیوندی از تفکر زیستی و غیرزیستی خواهد بود. اما بخش غیر زیستی، موضوع قانون تغییرات شتابدار من است. تغییرات به صورت نمایی رشد خواهند کرد.
و به یاد بیاورید آخرین باری که نئوکورتکس خود را گسترش دادیم چه اتفاقی افتاد. دو میلیون سال پیش بود، وقتی انسان نماهایی شدیم، و این پیشانی بزرگ را گسترش دادیم. پستانداران دیگر یک ابروی مایل دارند. آنها فاقد قشر قدامی هستند. اما قشر قدامی واقعاً یک تفاوت کیفی به حساب نمی آید. بلکه گسترش کمّی نئوکورتکس است اما این میزان اضافی تفکر عاملی بود که ما را قادر ساخت جهشی برداریم و زبان ها، هنر،علم، تکنولوژی و کنفرانس TED را اختراع کنیم.
هیچ گونه ی دیگری این کار را انجام نداده است. و در طول چند دهه ی دیگر، قصد داریم دوباره این کار را انجام دهیم. قصد داریم بار دیگر نئوکورتکس خود را گسترش دهیم، اما این بار دیگر توسط چارچوبی از معماری ثابت محدود نخواهیم شد. نئوکورتکس بدون محدودیت گسترش می یابد، آن مقدار اضافی دوباره عاملی خواهد بود که به ما اجازه ی جهشی دیگر در فرهنگ و فناوری را خواهد داد. خیلی ممنونم. (تشویق)
Let me tell you a story. It goes back 200 million years. It's a story of the neocortex, which means "new rind." So in these early mammals, because only mammals have a neocortex, rodent-like creatures. It was the size of a postage stamp and just as thin, and was a thin covering around their walnut-sized brain, but it was capable of a new type of thinking. Rather than the fixed behaviors that non-mammalian animals have, it could invent new behaviors.
So a mouse is escaping a predator, its path is blocked, it'll try to invent a new solution. That may work, it may not, but if it does, it will remember that and have a new behavior, and that can actually spread virally through the rest of the community. Another mouse watching this could say, "Hey, that was pretty clever, going around that rock," and it could adopt a new behavior as well. Non-mammalian animals couldn't do any of those things. They had fixed behaviors.
Now they could learn a new behavior but not in the course of one lifetime. In the course of maybe a thousand lifetimes, it could evolve a new fixed behavior. That was perfectly okay 200 million years ago. The environment changed very slowly. It could take 10,000 years for there to be a significant environmental change, and during that period of time it would evolve a new behavior. Now that went along fine, but then something happened. Sixty-five million years ago, there was a sudden, violent change to the environment.
We call it the Cretaceous extinction event. That's when the dinosaurs went extinct, that's when 75 percent of the animal and plant species went extinct, and that's when mammals overtook their ecological niche, and to anthropomorphize, biological evolution said, "Hmm, this neocortex is pretty good stuff," and it began to grow it. And mammals got bigger, their brains got bigger at an even faster pace, and the neocortex got bigger even faster than that and developed these distinctive ridges and folds
basically to increase its surface area. If you took the human neocortex and stretched it out, it's about the size of a table napkin, and it's still a thin structure. It's about the thickness of a table napkin. But it has so many convolutions and ridges it's now 80 percent of our brain, and that's where we do our thinking, and it's the great sublimator. We still have that old brain that provides our basic drives and motivations, but I may have a drive for conquest,
and that'll be sublimated by the neocortex into writing a poem or inventing an app or giving a TED Talk, and it's really the neocortex that's where the action is. Fifty years ago, I wrote a paper describing how I thought the brain worked, and I described it as a series of modules. Each module could do things with a pattern. It could learn a pattern. It could remember a pattern. It could implement a pattern. And these modules were organized in hierarchies, and we created that hierarchy with our own thinking.
And there was actually very little to go on 50 years ago. It led me to meet President Johnson. I've been thinking about this for 50 years, and a year and a half ago I came out with the book "How To Create A Mind," which has the same thesis, but now there's a plethora of evidence. The amount of data we're getting about the brain from neuroscience is doubling every year. Spatial resolution of brainscanning of all types is doubling every year. We can now see inside a living brain
and see individual interneural connections connecting in real time, firing in real time. We can see your brain create your thoughts. We can see your thoughts create your brain, which is really key to how it works. So let me describe briefly how it works. I've actually counted these modules. We have about 300 million of them, and we create them in these hierarchies. I'll give you a simple example. I've got a bunch of modules that can recognize the crossbar to a capital A, and that's all they care about.
A beautiful song can play, a pretty girl could walk by, they don't care, but they see a crossbar to a capital A, they get very excited and they say "crossbar," and they put out a high probability on their output axon. That goes to the next level, and these layers are organized in conceptual levels. Each is more abstract than the next one, so the next one might say "capital A." That goes up to a higher level that might say "Apple." Information flows down also. If the apple recognizer has seen A-P-P-L, it'll think to itself, "Hmm, I think an E is probably likely,"
and it'll send a signal down to all the E recognizers saying, "Be on the lookout for an E, I think one might be coming." The E recognizers will lower their threshold and they see some sloppy thing, could be an E. Ordinarily you wouldn't think so, but we're expecting an E, it's good enough, and yeah, I've seen an E, and then apple says, "Yeah, I've seen an Apple." Go up another five levels, and you're now at a pretty high level of this hierarchy, and stretch down into the different senses,
and you may have a module that sees a certain fabric, hears a certain voice quality, smells a certain perfume, and will say, "My wife has entered the room." Go up another 10 levels, and now you're at a very high level. You're probably in the frontal cortex, and you'll have modules that say, "That was ironic. That's funny. She's pretty." You might think that those are more sophisticated, but actually what's more complicated is the hierarchy beneath them. There was a 16-year-old girl, she had brain surgery, and she was conscious because the surgeons
wanted to talk to her. You can do that because there's no pain receptors in the brain. And whenever they stimulated particular, very small points on her neocortex, shown here in red, she would laugh. So at first they thought they were triggering some kind of laugh reflex, but no, they quickly realized they had found the points in her neocortex that detect humor, and she just found everything hilarious whenever they stimulated these points. "You guys are so funny just standing around,"
was the typical comment, and they weren't funny, not while doing surgery. So how are we doing today? Well, computers are actually beginning to master human language with techniques that are similar to the neocortex. I actually described the algorithm, which is similar to something called a hierarchical hidden Markov model, something I've worked on since the '90s. "Jeopardy" is a very broad natural language game, and Watson got a higher score than the best two players combined.
It got this query correct: "A long, tiresome speech delivered by a frothy pie topping," and it quickly responded, "What is a meringue harangue?" And Jennings and the other guy didn't get that. It's a pretty sophisticated example of computers actually understanding human language, and it actually got its knowledge by reading Wikipedia and several other encyclopedias. Five to 10 years from now, search engines will actually be based on not just looking for combinations of words and links but actually understanding,
reading for understanding the billions of pages on the web and in books. So you'll be walking along, and Google will pop up and say, "You know, Mary, you expressed concern to me a month ago that your glutathione supplement wasn't getting past the blood-brain barrier. Well, new research just came out 13 seconds ago that shows a whole new approach to that and a new way to take glutathione. Let me summarize it for you." Twenty years from now, we'll have nanobots, because another exponential trend is the shrinking of technology.
They'll go into our brain through the capillaries and basically connect our neocortex to a synthetic neocortex in the cloud providing an extension of our neocortex. Now today, I mean, you have a computer in your phone, but if you need 10,000 computers for a few seconds to do a complex search, you can access that for a second or two in the cloud. In the 2030s, if you need some extra neocortex, you'll be able to connect to that in the cloud directly from your brain.
So I'm walking along and I say, "Oh, there's Chris Anderson. He's coming my way. I'd better think of something clever to say. I've got three seconds. My 300 million modules in my neocortex isn't going to cut it. I need a billion more." I'll be able to access that in the cloud. And our thinking, then, will be a hybrid of biological and non-biological thinking, but the non-biological portion is subject to my law of accelerating returns. It will grow exponentially.
And remember what happens the last time we expanded our neocortex? That was two million years ago when we became humanoids and developed these large foreheads. Other primates have a slanted brow. They don't have the frontal cortex. But the frontal cortex is not really qualitatively different. It's a quantitative expansion of neocortex, but that additional quantity of thinking was the enabling factor for us to take a qualitative leap and invent language and art and science and technology
and TED conferences. No other species has done that. And so, over the next few decades, we're going to do it again. We're going to again expand our neocortex, only this time we won't be limited by a fixed architecture of enclosure. It'll be expanded without limit. That additional quantity will again be the enabling factor for another qualitative leap in culture and technology. Thank you very much. (Applause)