021-22889554
021-26703715
مشاوره آموزشی رایگان

021-22889554  |  021-26703715 مشاوره آموزشی رایگان

اگر چاپگر سه بعدی ۱۰۰ برابر سریعتر بود چه؟

Joseph DeSimone

What if 3D printing was 100x faster?

What we think of as 3D printing, says Joseph DeSimone, is really just 2D printing over and over ... slowly. Onstage at TED2015, he unveils a bold new technique -- inspired, yes, by Terminator 2 -- that's 25 to 100 times faster, and creates smooth, strong parts. Could it finally help to fulfill the tremendous promise of 3D printing?


تگ های مرتبط :

Demo, Design, Technology
خوشحالم که امروز اینجا هستم تا با شما کاری را که انجام میدهیم و بیشتر از دو سال مشغول ان بودیم را در میان بگذارم، و این کار تولید به روش افزودن، یا چاپ سه بعدی هست. این شی را در دست من می بینید. به نظر ساده می آید. ولی در عین حال بسیار پیچیده هست. این مجموعه ای از ساختارهای هم مرکز جئودزیک هست، که به هم مرتبط هستند. این شی، با روش های مرسوم قابل تولید نیست. تقارنی دارد که قابل تزریق نیست. حتی نمی توان با تراشکاری آن را ساخت. این کار چاپگر سه بعدی است. اما بیشتر پرینترهای سه بعدی بین ۳ تا ۱۰ ساعت برای ساخت این زمان صرف می کنند،
و می خواهیم خطر کنیم و ظرف ده دقیقه‌ی این سخنرانی سعی کنیم که بر روی صحنه آن را بسازیم. برایمان آرزوی موفقیت کنید. در واقع نام چاپگر سه بعدی نام اشتباهی برایش هست. این یک چاپگر دوبعدی است که کاری را بارها و بارها انجام می دهد، و در حقیقت تکنولوژی چاپگر دوبعدی را بکار می گیرد. درباره چاپگر تزریقی فکر کنید که شما جوهر را در ان برای چاپ بر روی کاغذ می گذارید. و سپس بارها و بارها اینکار را انجام دهید تا یک شی سه بعدی درست کنید. در میکروالکترونیک، آنها از چیزی به نام لیتوگرافی استفاده می کنند تا کاری مشابه این را انجام دهند، برای ساخت ترانزیستورها و مدارهای بسته و ساخت سازه ای برای چندین مرتبه.
همه اینها فنآوری چاپ دو بعُدی هستند. من دانشمند شیمی و مواد هستم، و همکاران نوآور من نیز دانشمندان مواد هستند، یکی شیمیدان و دیگری فیزیکدان هستند، و ما علاقمند به چاپ سه بعُدی شدیم. میدانید که ایده های نو با ارتباطات ساده بین افراد با تجارب متفاوت در جوامع متفاوت بوجود می اید، و داستان ما نیز همینطور است. ما از صحنه فیلم ترمیناتور۲ برای T-1000, الهام گرفتیم، و فکر کردیم، چرا روش چاپ سه بعُدی بکار نگیریم، جایی که شما شی را از یک حوضچه مایع در زمان واقعی بالا می آورید
بدون هیچ ضایعات موادی برای ساخت یک چیز بسیار عالی. بسیار خوب، درست مثل فیلم‌ها. آیا می توان از هالیوود الهام گرفت و روشی یافت تا واقعا بتوان این کار را کرد؟ این چالش ما بود. اگر بتوانیم اینکار را بکنیم، این دستآورد ما خواهد بود، پس ما می‌توانیم بطور بنیادی سه موضوع برای چاپ سه بعدی در فرایند تولید مطرح کنیم. یک، چاپ سه بعدی زمان طولانی را می برد. قارچ‌ها خیلی سریعتر از چاپ سه بعدی می رویند.( خنده تماشاگران) فرآیند لایه لایه بودن آن موجب تخریب خواص مکانیکی قطعه می شوند،
اگر بتوانیم شی را پیوسته عمل آوریم، می توانیم این آثار تخریبی را از بین ببریم. در حقیقت، اگر ما واقعا بتوانیم سریعا شی را عمل آوریم، می توانیم شروع به استفاده مواد کنیم که اینها خودشان سفت و محکم می شوند و ما می توانیم ویژگیهای شگفت آوری در قطعه عمل آورده شده داشته باشیم. اگر بتوانیم این را شروع کنیم، و از هالیوود تقلید کنیم، می توانیم چاپ سه بعدی داشته باشیم. رویکرد ما استفاده از برخی دانش‌های استاندارد شیمیایی پلیمری برای مهار نور و اکسیژن برای رشد مداوم و عمل آوردن قطعه بود. نور و اکسیژن به روشهای متفاوتی کار می کنند. نور می تواند رزین را بگیرد و تبدیل به یک جسم جامد بکند، در واقع می تواند مایع را به جامد تبدیل کند. اکسیژن مانع انجام این فرآیند است.
بنابراین نور و اکسیژن از نقطه نظر شیمایی دو قطب متضاد بکدیگر هستند، و اگر بتوانیم اکسیژن و نور را بطور جداگانه کنترل کنیم، می‌توانیم این فرایند را نیز کنترل کنیم. ما آن را CLIP نامیدیم [خط اتصال تولید مایع پیوسته] این مولفه ای از سه عملکرد متفاوت است. یک، این مخزن برای نگهداری مایع دارد، درست مانند T-1000. در ته مخرن یک پنجره مخصوص وجود دارد. بعدا درباره این صحبت خواهیم کرد. با اضافه، یک مرحله پائین تر از مایع کردن و بیرون آوردن قطعه از مایع . سومین مولفه سیستم عملکردی دیجیتالی نور
در زیر مخزن هست، روشن کردن آن با نور منطقه اشعه ماوراء بنفش. نکته کلیدی پنجره زیر مخزن است، این پنجره از اجزاء مختلف تشکیل شده و خیلی خاص می باشد. این حتی نسبت به نور شفاف نیست اما نسبت به اکسیژن نفوذپذیر است. این خواصی مشابه لنز چشمی دارد. بنابراین ما می‌توانیم ببینیم که فرایند کار چگونه است. شما می تواند مراحل پائین را در اینجا ببینید، در روش مرسوم با پنجره نفوذپذیر اکسیژن ، شما یک الگوی دو بعدی تهیه می کنید و ان را در این پنچره روش مرسوم قرار می دهید و برای قراردادن لایه بعدی، ما باید این را جدا کنیم، رزین جدید را قرار می دهیم، و آن را تغییر موقعیت دهیم،
و این فرایند را بارها و بارها تکرار کنیم. اما با پنجره خیلی خاص ما، کاری که ما قادریم انجام دهیم، با اکسیژنی که از پائین می‌اید و نوری که به آن برخورد می کند، اکسیژن مانع واکنش می شود، ما مرحله مُرده را شکل دادیم، (مرحله ای که هیچ واکنش انجام نمی شود و قطعه محکم می شود) در مرحله مُرده دهها میکرون ضخامت ایجاد می شود ، خُب این دو یا سه قطر از مایع قرمز رنگ است، درست در پنجره محل اتصال مایع باقی می ماند، و ما این شی را بیرون می کشیم، و همانطور که در مورد مقاله های علمی صحبت می‌کنیم، وقتی ارتباط اکسیژن را تغییر می دهیم، می توانیم ضخامت مرحله مرده را تغییر دهیم.
خب تعداد کلید متغییر داریم که می توانیم اکسیژن ، نور، شدت نور، چسبناکی و شکل هندسی آن را کنترل کنیم و نرم افراز بسیار پیچیده‌ای را برای این فرایند استفاده می کنیم. نتیجه سرگیجه آوره. این بین ۲۵ تا۱۰۰ برابر سریعتر از روش مرسوم چاپگر سه بعدی عمل می کند، که بازی را تغییر می دهد. علاوه بر آن، چون ما می توانیم مایع را به محل اتصال بیاوریم، معتقدم که ما می توانیم ۱٫۰۰۰ مترتبه سریعتر باشیم، و در حقیقت این فرصتهایی زیادی را برای تولید مقدار زیادی گرما ایجاد می کند، و به عنوان مهندس شیمی، و این ایده که شاید روزی ما چاپگر سه بعدی با خنک کننده آبی داشته باشیم،
زیرا آنها خیلی سریع عمل می کنند. علاوه بر آن، به لیل اینکه ما چیزی را رشد می دهیم ما لایه ها را میان برمی داریم، و قطعه یکپارچه هست شما روی سطح قطعه ساختار آن را نمی بینید. شما سطح صاف از لحاط مولکولی دارید. روش مکانیکی بیشتر قطعاتی که توسط چاپگر سه بعدی ساخته شده به دلیل داشتن بعضی ویژگیها بدنام هستند و این بستگی به جهت گیری دارید که شما به آن اشاره می کنید، زیرا لایه ها مانند یک سازه می مانند. اما هنگامی که شما یک شی مانند این عمل می‌اورید، خواص توسط جهت چاپگر ثابت می شود. این مانند قطعه تزریقی می ماند، که بسیار متفاوت از روش مرسوم تولید سه بعدی هست.
علاوه بر آن، ما قادریم تمامی کتاب های شیمی پلیمر مثل این را به اضاف کنیم، و قادر خواهیم بود که طراحی شیمیایی منجر به ایجاد ویژگیهایی خواهد شد که شما واقعا می خواهید در شیی که توسط چپگر سه بعدی ساخته موشد وجود داشته باشد. ( تشویق تماشاگران) همه اش همین است. این عالی است. همیشه این خطر را درد که چیزی شبیه این بر روی صحنه کار نکند، درسته؟ خوب.اما می توانیم موادی را داشته باشیم با ویژگیهای مکانیکی بسیار عالی. برای اولین بار، می توانیم لاستومرها که خاصیت ارتجاعی بالا یی را دارند را داشته باشیم. در مورد کنترل ارتعاشات و یا داشتن کفش ورزشی خوب برای مثال فکر کنید. ما موادی که استحکام باورنکردنی دارند را می‌توانیم بسازیم.
نسبت استحکام به وزن، مواد بسیار محکمی با قابلیت ارتجاعی بسیار بالا، من این را بین حاضرین پرتاب می کنم. پس خواص مواد خوب، خُب فرصت ها . اگر یک قطعه را بسازید که قطعه نهایی خط تولید باشد، و آن را در بازی تغییر سرعت قراردهید، می توانید روش تولید را دگرگون کنید. اکنون، در تولید، انچه که اتفاق می افتد این است، آنچه که به اصلاح رشته دیجیتالی در تولید دبجیتالی می گویند. ما از نقشه اتوکد، به طرح نقشه اولیه تا نقشه ساخت نمونه می رویم. اغلب، رشته دیجیتالی درست در زمان ساخت نمونه شکسته می‌شود، زیرا شما تمامی مسیر تولید را نمی توانید بروید
چونکه بیشتر قطعات این ویژگی را ندارند که قطعه نهایی باشند. حال آنکه ما می توانیم رشته دیجیتالی را در تمامی مسیر طراحی تا نمونه اولیه به هم متصل کنیم، و این ویژگی درهای زیادی را باز می کند، از بهبود در بهروری سوخت اتومبیل با ویژگیهایتوری های مشبک و استحکام بالا نسبت به وزن، پره های توربین، و تمامی چیزهای بسیار شگفت انگیز دیگر. درباره اینکه شما در شرایط اضطراری نیاز به یک استنت( توری که داخل رگ میگذارند) داشته باشید، به جای اینکه دکتر استنت را با سایز استاندارد به داخل قفسه سینه شما هل دهد، داشتن یک استنت که دقیقا برای آناتومی بدن شما طراحی شده باشد انشعابات لازم بدن خودتان،
در شرایط اضطراری در همان زمان چاپ شود با ویژگیهای لازم که بعد از ۱۸ ماه برداشته شود: این واقعا همه چیز را عوض می کند. یا در صنعت دیجیتال، ساخت تمامی این سازه ها حتی هنگامی که شما روی صندلی دندانپزشک نشسته اید. به این سازه که دانشجویانم در دانشگاه کارولینای جنوبی ساخته اند نگاه کنید. اینها سازه های مایکرو شگفت انگیزی هستند. جهان واقعا در ساخت ننو عالی هست. قانون مور برای چیزهای به ضخامت ۱۰ میکرون و کمتر مورد استفاده قرار می گیرد. ما واقعا در این زمینه خوب هستیم، اما واقعا خیلی مشکل هست که یک قطعه را از ۱۰ میکرون به ۱٫۰۰۰ میکرون ضخامت تولید کنیم، مزوسکوپی.
و تکنیک های کاهشی در صنعت سیلیکون (عمدتا در تولید تراشه های کامپیوتربکار میرود) نمی تواند خیلی خوب عمل کند. آنها نمی توانند حالت شبکه تخلخلی خیلی خوبی ایجاد کنند. اما این فرایند بسیار ظریف هست، و ما می توانیم این اشیاء را از پائین عمل اوریم با استفاده از تولیدات افزودنی چیزهای بسیار جالبی را در چند ده ثانیه می سازد، باز کردن فن آوری سنسور جدید، تکنیک‌های داروهای جدید، آزمایشگاه جدیدی بر روی تراشه برنامه های کاربردی، واقعا همه چیزرا تغییر میدهد. بنابراین فرصت ساخت یک قطعه را در زمان واقعی که دارای خواص قطعه نهایی باشد برای تولیدات توسط چاپگر سه بعدی راه باز می‌شود،
و برای ما، این بسیار هیجان انگیز است، زیرا ما اکنون تلاقی بین سخت افزار، نرم افزار و علوم مولکولی با هم داریم، و من نمی توانم صبر کنم تا ببینم که طراحان و مهندسان سراسر جهان چه چیزهایی را با این ابزار طراحی می کنند. برای شنیدن حرفهایم سپاسگزارم. (تشویق)
I'm thrilled to be here tonight to share with you something we've been working on for over two years, and it's in the area of additive manufacturing, also known as 3D printing. You see this object here. It looks fairly simple, but it's quite complex at the same time. It's a set of concentric geodesic structures with linkages between each one. In its context, it is not manufacturable by traditional manufacturing techniques. It has a symmetry such that you can't injection mold it. You can't even manufacture it through milling. This is a job for a 3D printer,
but most 3D printers would take between three and 10 hours to fabricate it, and we're going to take the risk tonight to try to fabricate it onstage during this 10-minute talk. Wish us luck. Now, 3D printing is actually a misnomer. It's actually 2D printing over and over again, and it in fact uses the technologies associated with 2D printing. Think about inkjet printing where you lay down ink on a page to make letters, and then do that over and over again to build up a three-dimensional object. In microelectronics, they use something called lithography to do the same sort of thing, to make the transistors and integrated circuits
and build up a structure several times. These are all 2D printing technologies. Now, I'm a chemist, a material scientist too, and my co-inventors are also material scientists, one a chemist, one a physicist, and we began to be interested in 3D printing. And very often, as you know, new ideas are often simple connections between people with different experiences in different communities, and that's our story. Now, we were inspired by the "Terminator 2" scene for T-1000, and we thought, why couldn't a 3D printer operate in this fashion,
where you have an object arise out of a puddle in essentially real time with essentially no waste to make a great object? Okay, just like the movies. And could we be inspired by Hollywood and come up with ways to actually try to get this to work? And that was our challenge. And our approach would be, if we could do this, then we could fundamentally address the three issues holding back 3D printing from being a manufacturing process. One, 3D printing takes forever. There are mushrooms that grow faster than 3D printed parts. (Laughter)
The layer by layer process leads to defects in mechanical properties, and if we could grow continuously, we could eliminate those defects. And in fact, if we could grow really fast, we could also start using materials that are self-curing, and we could have amazing properties. So if we could pull this off, imitate Hollywood, we could in fact address 3D manufacturing. Our approach is to use some standard knowledge in polymer chemistry to harness light and oxygen to grow parts continuously. Light and oxygen work in different ways. Light can take a resin and convert it to a solid, can convert a liquid to a solid.
Oxygen inhibits that process. So light and oxygen are polar opposites from one another from a chemical point of view, and if we can control spatially the light and oxygen, we could control this process. And we refer to this as CLIP. [Continuous Liquid Interface Production.] It has three functional components. One, it has a reservoir that holds the puddle, just like the T-1000. At the bottom of the reservoir is a special window. I'll come back to that. In addition, it has a stage that will lower into the puddle and pull the object out of the liquid.
The third component is a digital light projection system underneath the reservoir, illuminating with light in the ultraviolet region. Now, the key is that this window in the bottom of this reservoir, it's a composite, it's a very special window. It's not only transparent to light but it's permeable to oxygen. It's got characteristics like a contact lens. So we can see how the process works. You can start to see that as you lower a stage in there, in a traditional process, with an oxygen-impermeable window, you make a two-dimensional pattern and you end up gluing that onto the window with a traditional window,
and so in order to introduce the next layer, you have to separate it, introduce new resin, reposition it, and do this process over and over again. But with our very special window, what we're able to do is, with oxygen coming through the bottom as light hits it, that oxygen inhibits the reaction, and we form a dead zone. This dead zone is on the order of tens of microns thick, so that's two or three diameters of a red blood cell, right at the window interface that remains a liquid, and we pull this object up, and as we talked about in a Science paper,
as we change the oxygen content, we can change the dead zone thickness. And so we have a number of key variables that we control: oxygen content, the light, the light intensity, the dose to cure, the viscosity, the geometry, and we use very sophisticated software to control this process. The result is pretty staggering. It's 25 to 100 times faster than traditional 3D printers, which is game-changing. In addition, as our ability to deliver liquid to that interface, we can go 1,000 times faster I believe, and that in fact opens up the opportunity for generating a lot of heat, and as a chemical engineer, I get very excited at heat transfer
and the idea that we might one day have water-cooled 3D printers, because they're going so fast. In addition, because we're growing things, we eliminate the layers, and the parts are monolithic. You don't see the surface structure. You have molecularly smooth surfaces. And the mechanical properties of most parts made in a 3D printer are notorious for having properties that depend on the orientation with which how you printed it, because of the layer-like structure. But when you grow objects like this, the properties are invariant with the print direction. These look like injection-molded parts,
which is very different than traditional 3D manufacturing. In addition, we're able to throw the entire polymer chemistry textbook at this, and we're able to design chemistries that can give rise to the properties you really want in a 3D-printed object. (Applause) There it is. That's great. You always take the risk that something like this won't work onstage, right? But we can have materials with great mechanical properties. For the first time, we can have elastomers that are high elasticity or high dampening. Think about vibration control or great sneakers, for example.
We can make materials that have incredible strength, high strength-to-weight ratio, really strong materials, really great elastomers, so throw that in the audience there. So great material properties. And so the opportunity now, if you actually make a part that has the properties to be a final part, and you do it in game-changing speeds, you can actually transform manufacturing. Right now, in manufacturing, what happens is, the so-called digital thread in digital manufacturing. We go from a CAD drawing, a design, to a prototype to manufacturing.
Often, the digital thread is broken right at prototype, because you can't go all the way to manufacturing because most parts don't have the properties to be a final part. We now can connect the digital thread all the way from design to prototyping to manufacturing, and that opportunity really opens up all sorts of things, from better fuel-efficient cars dealing with great lattice properties with high strength-to-weight ratio, new turbine blades, all sorts of wonderful things. Think about if you need a stent in an emergency situation, instead of the doctor pulling off a stent out of the shelf
that was just standard sizes, having a stent that's designed for you, for your own anatomy with your own tributaries, printed in an emergency situation in real time out of the properties such that the stent could go away after 18 months: really-game changing. Or digital dentistry, and making these kinds of structures even while you're in the dentist chair. And look at the structures that my students are making at the University of North Carolina. These are amazing microscale structures. You know, the world is really good at nano-fabrication. Moore's Law has driven things from 10 microns and below.
We're really good at that, but it's actually very hard to make things from 10 microns to 1,000 microns, the mesoscale. And subtractive techniques from the silicon industry can't do that very well. They can't etch wafers that well. But this process is so gentle, we can grow these objects up from the bottom using additive manufacturing and make amazing things in tens of seconds, opening up new sensor technologies, new drug delivery techniques, new lab-on-a-chip applications, really game-changing stuff.
So the opportunity of making a part in real time that has the properties to be a final part really opens up 3D manufacturing, and for us, this is very exciting, because this really is owning the intersection between hardware, software and molecular science, and I can't wait to see what designers and engineers around the world are going to be able to do with this great tool. Thanks for listening. (Applause)