26703715 مشاوره آموزشی رایگان

26703715 مشاوره آموزشی رایگان

الان قادریم دی‎ان‎ای را ویرایش کنیم. اما بیاید عاقلانه انجامش دهیم

Jennifer Doudna

How CRISPR lets us edit our DNA

Geneticist Jennifer Doudna co-invented a groundbreaking new technology for editing genes, called CRISPR-Cas9. The tool allows scientists to make precise edits to DNA strands, which could lead to treatments for genetic diseases ... but could also be used to create so-called "designer babies." Doudna reviews how CRISPR-Cas9 works -- and asks the scientific community to pause and discuss the ethics of this new tool.


تگ های مرتبط :

Genetics, Philosophy, Science
چند سال پیش، همراه همکارم، امانوئل شارپنتیر فناوری تازهایی برای اصلاح ژنومها اختراع کردم . به اسم CRISPR-Cas9. فناوری CRISPR به دانشمندان اجازه میدهد تغییراتی در دیانای سلولها ایجاد کنند تا قادر باشیم امراض ژنتیکی را درمان کنیم. شاید علاقمند باشید بدانید که CRISPR چطور از یک پروژه تحقیقی ابتدایی که هدفش کشف چگونگی مبارزه باکتریها با عفونتهای ویروسی بود به اینجا ختم شد. باکتریها باید با ویروسها در محیطشان سروکار داشته باشند، و ما میتوانیم به عفونت ویروسی بعنوان یک بمب ساعتی نگاه کنیم-- باکتری پیش از نابودی تنها چند دقیقه
برای خنثی کردن بمب زمان دارد. خب اکثر باکتریها در سلولهایشان سیستم ایمنی تطابق پذیری به اسم CRISPR دارند، که آنها را قادر به کشف دیانای ویروسی و بعد نابودیشان میکند. بخشی از سیستم CRISPR پروتینی به اسم Cas9 است، که قابلیت جستجو، برش زدن و سرانجام استحاله دیانای ویروسی را به روشی خاص دارد. و از طریق تحقیق ما برای فهمیدن فعالیت این پروتئین Cas9 بود که فهمیدیم قادر به مهار این کارکرد بعنوان یک فناوری مهندسی ژنتیک هستیم-- روشی برای دانشمندان جهت حذف یا وارد کردن تکههای خاص دیانای به درون سلولها با دقتی باور نکردنی-- که فرصتهایی را برای انجام
کارهایی که واقعا در گذشته غیرمحتمل بودند، فراهم میکند. فناوری CRISPR همین حالا هم برای تغییر دیانای در سلولهای موشها و میمونها و دیگر موجودات نیز استفاده میشود. اخیرا دانشمندان چینی نشان دادند که آنها حتی توانستهاند از فناوری CRISPR برای تغییرات ژنی در جنین انسان استفاده کنند. و دانشمندان در فیلادلفیا نشان دادند که آنها میتوانند از CRISPR برای برداشتن دیانای از یک ویروس اچآیوی ادغام شده از سلولهای انسان مبتلا استفاده کنند. فرصت انجام این چنین ویرایشهای ژنومی البته منجر به بروز مسائل اخلاقی متعدد میشود که نیاز به بررسی دارد،
زیرا این فناوری را نه تنها میتوان در سلولهای بالغ بکار برد، بلکه قابلیت بکارگیری در جنین جانوران را نیز دارد، از جمله ما انسانها. و خب همراه با همکارانم به یک فراخوان جهانی درباره فناوری که یکی از مخترعین آن هستم دعوت شدهام، تا بتوانیم همه پیامدهای اخلاقی و اجتماعی فناوری مثل این را بررسی کنیم. آنچه میخواهم الان انجام دهم این است که به شما بگویم فناوری CRISPR چیست، چه کارمیتواند انجام دهد، امروز کجای کار هستیم و این که چرا فکر میکنم لازم است مسیر حساب شدهای را در نحوه بکارگیری این فناری اتخاذ کنیم. وقتی ویروسها سلولی را آلوده میکنند، به دیانایشان نفوذ میکنند.
و در یک باکتری، سیستم CRISPR دیانای را قادر میسازد آن ویروس را بیرون براند، و در تکههای کوچک توی کروموزوم قرار گیرد--- دیانای باکتری. و این تکههای یکپارچه شده دیانای ویروسی توی محلی به اسم CRISPR جا میگیرند. CRISPR مخفف تناوبهای کوتاه پالیندروم فاصلهدار منظم خوشهای است. (خنده) حسابی دهن پرکن است-- برای همین است که از مخفف CRISPR استفاده میکنیم. راهکاری که به سلولها اجازه میدهد در طول زمان به ثبت ویروسهای بپردازند که در معرضشان بودهاند. و از همه مهمتر، آن تکههای دیانای به نتاج سلولها منتقل میشوند. بنابراین سلولها نه تنها در یک نسل بلکه طی نسلها زیادی
از ویروسها محافظت میشوند. سلولها این امکان را می‌یابند که سابقه عفونت را ثبت کنند، و آنطور که همکارم بلیک وایدنفت دوست دارد بگوید، ژنگاه CRISPR کارت واکسیناسیون موثری در سلولهاست. هنگامی که آن تکههای دیانای در داخل کوموزم باکتریایی قرار داده میشوند، سلول کپی کوچکی از مولکولی به اسم RNA را میسازد، که در عکس نارنجی است، و برگردان دقیقی از دیانای ویروسی است. RNA عموزاه شیمیایی دیانای است، و اجازه فعل و انفعال با مولکولهای دیانای را میدهد که توالی مشابهای دارد. پس این تکههای کوچک RNA از ژنگاه CRISPR با پروتئینی به اسم Cas9 یکپارچه میشود-- بهم وصل میشوند--
که در تصویر سفید است، و مجموعهای را شکل میدهد که به نگهبان توی سلول میماند. توی کل دیانای سلول را میگردد تا محلهایی را بیابد که با توالیها در RNAهای بهم متصل سازگار است. و وقتی آن محلها یافت میشوند-- هانطور که در اینجا میبینید، مولکول آبی دیانای است-- این مجموعه با دیانای یکپارچه شده و به ساطور Cas9 اجازه قطع کردن دیانای ویروسی را میدهد. برشی بسیار دقیق است. پس میتوانیم به Cas9 RNA بعنوان مجموعه ساطوری فکر کنیم مثل قیچی که دیانای را میتواند ببرد-- در هلیکس دیانای شکست دو رشتهای ایجاد میکند. و از همه مهمتر این مجموعه قابل برنامهریزی است،
بنابراین میتواند طوری برنامهریزی شود که توالهای خاص دیانای را تشخیص دهد، و در آن محل در دیانای شکستگی ایجاد کند. همانطور که الان برایتان خواهم گفت تشخیص دادیم که آن فعالیت را میتوان برای مهار کردن مهندسی ژنوم بکار برد تا سلولها بتوانند تغییر بسیار دقیقی را در دیانای در محلی که این شکستگی معرفی شده ایجاد کنند. مانند همان نوع قیاسگری در روشی که برای پروسه پردازش کلمات جهت تصیح اشتباه املائی در اسناد استفاده میشود. دلیلی که ما استفاده از سیستم CRISPR را برای مهندسی ژنوم در نظر گرفتیم بخاطر این است که سلولها قابلیت شناسایی دیانای خراب و تعمیر آن را دارند.
پس وقتی سلول گیاه یا حیوانی دچار قطع دورشته‌ای در دیانای آن میشود، میتواند آن شکست را تعمیر کند، خواه از طریق چسباندن انتهای دیانایها منقطع بهم با یک تغییر جزیی و کوچک یا تعمییر شکستگی با یکپارچهسازی تکه تازهای از دیانای در محل قطع شدن. پس اگر روشی برای معرفی شکستگیهای رشتههای دوگانه به داخل دیانای در محلهای دقیق داشته باشیم، قادر به برانگیختن سلولها برای تعمیر آن شکستگیها خواهیم بود، خواه از طریق شکاف یا همکاری اطلاعات ژنتیکی جدید. پس اگر قادر به برنامه ریزی فناوری CRISPR در شکستن دیانای باشیم در نزدیکی یا محلی که برای مثل جهش منجرشده به فیبروز سیستیک رخ داده،
قادر به برانگیختن سلولها برای تعمیر آن جهش هستیم. مهندسی ژنوم راستش چیز تاز‌های نیست، از دهه ۱۹۷۰ در حال پیشرفت بوده. ما فناوریهایی برای توالی دیانای داشتهایم، برای کپی کردن دیانای، و حتی برای دستکاری دیانای. و این فناوریها بسیار نویدبخش بودند، اما مشکل ناکارآمدی آنها بود، یا این که برای بکارگیری زیادی سخت بودند، طوریکه بیشتر دانشمندان از بکارگیری آنها در آزمایشگاهایشان یا قطعا در بسیار استعمالهای کلینیکی خودداری کردند. بنابراین، فرصت بکارگیری فناوری مثلCRISPR و استفاده از آن جذابیت دارد، چون نسبتا ساده است. فناوریهای مهندسی ژنوم قدیمیتر درست مشابه این است
که کامپیوترتان را هر باری که قصد اجرای نرم افزاری جدید را دارید، از نو سیم کشی کنید. فناوری CRISPR مثل نرم افزار برای ژنوم است، به راحتی قادریم با بکار گیری این ذرههای کوچک دیانای آن را برنامه ریزی کنیم. پس وقتی قطع دورشته‌ای در دیانای اتفاق میافتد، میتوانیم تعمیر را القاء کنیم، و بدان وسیله به دستاوردهای بالقوهای برسیم، مثل داشتن قابلیت اصلاح جهشهایی که باعث کم خونی مدیترانهای یا بیماری هانتینگتون میشود. من راستش فکرمیکنم که اولین کاربردهای فناوری CRISPR در خون اتفاق بیفتد، جاییکه رساندن این ابزار به درون سلولها نسبتا آسان است،
در مقایسه با بافتهای جامد. هم اکنون، این کار بیشتر روی الگوهای حیوانی بیماری انسان انجام میشود، از قبیل موشها. از این فناوری برای انجام تغییرات بسیار دقیقی انجام میشود که به ما اجازه مطالعه نحوه تاثیر این تغییرات در دیانای سلولها را میدهد خواه بر روی یک بافت، و در این مورد روی کل اندام. حال در این مثال، از فناوری CRISPR برای قطع کردن یک ژن استفاده میشود یعنی از طریق انجام تغییری کوچک در دیانای در ژنی که مسئول رنگ سیاه پوشش این موشهاست. تصورش را کنید که این موشهای سفید از هم تولههای رنگدانهدارشان متقاوت هستند آنهم بواسطه یک تغییر جزیی در ژن کل ژنومشان،
و غیر از این کاملا عادی هستند. و هنگام توالی دیانای این حیوانات، پی میبریم که تغییر در دیانای درست در جایی اتفاق افتاده که در آنجا القاء کردیم، با استفاده از فناوری CRISPR. آزمایشهای اضافی روی بقیه حیوانات همچنان جریان دارد، که برای خلق الگوهایی برای بیماری انسان مفیدند، برای مثال میمون‌ها. و در اینجا پی میبریم که قادر به استفاده از این سیستمها برای تست کردن کابرد این فناوری در بافتهای خاص هستیم، برای مثال، پی بردن به نحوه بکار گیری ابزار CRISPR توی سلولها. ما همچنین مایلیم به درک بهتری از نحوه کنترل روشی برسیم که دیانای بعد از برش تعمیر میشود،
و همینطور بفهمیم چطور میتوان هر نوع تاثیر ناخواسته یا دور از هدف بواسطه استفاده از این فناوری را مهار کرد. فکر میکنم شاهد کاربرد کلینکی این فناوری خواهیم بود، قطعا در بزرگسالان، ظرف ۱۰ سال آینده. فکر میکنم که این احتمال هست شاهد آزمایشات کلینکی و شاید حتی تداویهای تایید شده در آن زمان باشیم، که فکرش هم بسیار هیجانانگیز است. و بخاطر هیجان موجود درباره این فناوری، علاقمندی بسیاری از سوی شرکتهای نوپای کسب و کار دیده میشود که برای تجاری کردن فناوریCRISPR تاسیس شدهاند و بسیاری از سرمایه‌گذاران کارآفرین که در این شرکتها سرمایهگذاری میکنند.
اما باید همچنین در نظر داشته باشیم که فناوری CRISPR را میتوان برای چیزهایی مثل بهسازی استفاد کرد. تصور کنید که میتوانیم مهندسی انسانهایی را امتحان کنیم که خصیصههای تقویت شده دارد، از قبیل استخوانهای محکمتر، یا آسیب پذیری کمتر در برابر امراض قلبی یا حتی داشتن ویژگیهایی که شاید تمایل به داشتنش قابل ملاحظه باشد، مثل رنگ چشم متفاوت، یا قد بلندتر و چیزهایی مثل این. "طراحی انسانها،" اگر مایل باشید. امروز، اطلاعات ژنتیکی برای فهمیدن انواع ژنهایی که منجر به این خصیصهها میشوند تقریبا نامعلوم است. اما مهم است بدانیم
فناوری CRISPR ابزار لازم را برای چنین تغییراتی به ما میدهد، زمانی که اطلاعات در دسترس باشد. این مساله منتهی به مطرح شدن سوالات اخلاقی میشود که باید دربارهشان بادقت باشیم، و بهمین خاطر است که من و همکارانم خواستار مکثی جهانی در هر گونه کاربرد کلینکی در بکارگیری فناوری CRISPR در جنین انسان هستیم تا زمان داشته باشیم به بررسی دقیق انواع پیامدهای حاصل از انجام این کار بپردازیم. و در واقع، نمونه مهمی از چنین درنگی به دهه ۱۹۷۰ برمیگردد، زمانی که دانشمندان با هم یکی شدند تا خواستار دیرکرد قانونی در استفاده از همتاسازی مولکولی شوند تا مادامیکه ایمنی آن فناوری با دقت آزمایش میشد و به تایید میرسید.
با این که انسانهای با ژنوم مهندسی شده هنوز با ما نیستند، اما دیگر جزی از داستانهای علمی تخیلی محسوب نمیشوند. همین الان گیاهان و حیواناتی را داریم که ژنومشان مهندسی شده. و این اتفاق مسئولیت عظیمی را پیش روی ما قرار میدهد تا با دقت به بررسی پیامدهای غیرعمدی و تاثیرات عمدی یک پیشرفت علمی بپردازیم. متشکرم. (تشویق) (پایان تشویق) برونو گیوسانی: جنیفر، همانطور که اشاره کردی این فناوری با پیامدهای عظیم است. طرز نگرش تو درباره درخواست برای لحظهای مکث، ضرب الاجل یا قرنطینه بطزر باورنکردنی پاسخگوست.
البته نتایج درمانی هم دارد اما خب نتایج غیر درمانی هم دارد و به نظر میاید که آنها هستند که دچار انقباض میشوند، بویژه در رسانه. این یکی از نسخههای اخیر اکونومیست است--«ویرایش بشریت». به کل درباره افزایش ژنتیکی است، درباره تداوی نیست. با چه نوع واکنشهایی از سوی همکارانتان در جهان علم از سوی همکارانت مواجه شدی، وقتی ازت پرسیده میشد یا پیشنهاد میدادند که آیا واقعا باید برای لحظهای درنگ کنیم و درباره این کار فکر کنیم؟ جنیفر دودنا: همکارانم راستش فکر میکنم از فرصت پیش آمده برای بحث صریح سر این موضوع خوشحال بودند. جالبه وقتی با مردم صحبت میکنم،
همکاران دانشمندم و سایرین، نقطه نظرات مختلف گستردهای درباره این دیدگاه است. خب این موضوعی هست که نیاز به بحث و بررسی دقیق دارد. ب گ: جلسه بزرگی در دسامبر برگزار میشود که فراخوانی است از سوی شما و همکارنتان، همراه با آکادمی ملی دانشمندان و دیگران، در عمل توقع چه چیزی را از این نشست دارید؟ ج د: خب، امیدوارم که بتوانیم شنونده دیدگاههایی مختلف از اشخاص و سازمانهای ذینفع بسیاری باشیم که میخواهند درباره مسئولیت نحوه استفاده از این فناوری فکر کنند. شاید رسیدن به یک دیدگاه موافق کلی ممکن نباشد اما فکر میکنم باید حداقل به این درک برسیم که
با چه مسائل در حین پیشرویمان مواجه خواهیم شد. ب ج: الان، همکارانت، مثل جرج چرچ برای مثال در هاروارد، ادعا میکنند: «که بله، مسائل اخلاقی اساسا دغدغه ایمنی دارند. آنها را به دفعات روی حیوانات و در آزمایشگاهها تست میکنیم، و وقتی که حس کنیم بحد کافی ایمن است، روی انسانها منتقل میکنیم.» پس آن نوعی طرز تفکر دیگر است، که یعنی ما باید در واقع از این فرصت استفاده کنیم و دنبالش برویم. آیا در اینجا با شکافی احتمالی در جامعه علمی مواجهایم؟ منظورم این است که شاهد خواهیم بود برخی افراد بخاطر داشتن دغدغههای اخلاقی پا پس بکشند و برخی دیگر همینطور رو به جلو پیشروی کنند
چون برخی کشورها تحت نظارت هستند یا برخی دیگر خیر؟ ج د: خب، فکر میکنم با هر فناوری جدیدی بخصوص مثل این، دیدگاههای متعددی وجود دارد و فکر میکنم کاملا قابل درک است. فکر کنم سرآخر، این فناوری برای مهندسی ژنوم انسان استفاده خواهد شد، اما فکر میکنم که انجام آن بدون بررسی و بحث لازم درباره خطرات و پیامدهای بالقوه مسئولانه نباشد. ب گ: کلی فناوریها و رشتههای علوم دیگری هست که اندازه رشته شما پیشرفت نمایی دارند. دارم به هوش مصنوعی، رباطهای خودکار و غیره فکر میکنم. هیچکدام به نظر نمیرسند--
جدا از رباطهای جنگ طلب خودکار-- کسی به نظر نمیرسد که بحث مشابهای را در آن رشتهها شروع کرده باشد که فراخوانی برای دیرکرد است. آیا به نظرت این بحث میتواند پیش زمینهی رشتههای دیگر باشد؟ ج د: خب، فکر میکنم برای دانشمندان بیرون آمدن از آزمایشگاه دشوار است. از طرف خود میگویم، کمی کار برایم ناخوشایند است. اما همینطور فکر میکنم که دخیل بودن در این تکوین من و همراهانم را واقعا در جایگاه مسئول قرار میدهد. و باید بگویم که واقعا امیدوارم که دیگر فناوریها هم به همان ترتیب ملاحظه شوند، درست همانطوری که ما میخواهیم پیامدهای احتمالی چیزی را علاوه بر
زیست شناسی در دیگر رشتهها بررسی کنیم. ب گ: جنیفر از این که به TED آمدی ممنونم. ج د: متشکرم. (تشویق)
A few years ago, with my colleague, Emmanuelle Charpentier, I invented a new technology for editing genomes. It's called CRISPR-Cas9. The CRISPR technology allows scientists to make changes to the DNA in cells that could allow us to cure genetic disease. You might be interested to know that the CRISPR technology came about through a basic research project that was aimed at discovering how bacteria fight viral infections. Bacteria have to deal with viruses in their environment, and we can think about a viral infection like a ticking time bomb --
a bacterium has only a few minutes to defuse the bomb before it gets destroyed. So, many bacteria have in their cells an adaptive immune system called CRISPR, that allows them to detect viral DNA and destroy it. Part of the CRISPR system is a protein called Cas9, that's able to seek out, cut and eventually degrade viral DNA in a specific way. And it was through our research to understand the activity of this protein, Cas9, that we realized that we could harness its function as a genetic engineering technology -- a way for scientists to delete or insert specific bits of DNA into cells
with incredible precision -- that would offer opportunities to do things that really haven't been possible in the past. The CRISPR technology has already been used to change the DNA in the cells of mice and monkeys, other organisms as well. Chinese scientists showed recently that they could even use the CRISPR technology to change genes in human embryos. And scientists in Philadelphia showed they could use CRISPR to remove the DNA of an integrated HIV virus from infected human cells. The opportunity to do this kind of genome editing
also raises various ethical issues that we have to consider, because this technology can be employed not only in adult cells, but also in the embryos of organisms, including our own species. And so, together with my colleagues, I've called for a global conversation about the technology that I co-invented, so that we can consider all of the ethical and societal implications of a technology like this. What I want to do now is tell you what the CRISPR technology is, what it can do, where we are today and why I think we need to take a prudent path forward
in the way that we employ this technology. When viruses infect a cell, they inject their DNA. And in a bacterium, the CRISPR system allows that DNA to be plucked out of the virus, and inserted in little bits into the chromosome -- the DNA of the bacterium. And these integrated bits of viral DNA get inserted at a site called CRISPR. CRISPR stands for clustered regularly interspaced short palindromic repeats. (Laughter) A big mouthful -- you can see why we use the acronym CRISPR. It's a mechanism that allows cells to record, over time, the viruses they have been exposed to.
And importantly, those bits of DNA are passed on to the cells' progeny, so cells are protected from viruses not only in one generation, but over many generations of cells. This allows the cells to keep a record of infection, and as my colleague, Blake Wiedenheft, likes to say, the CRISPR locus is effectively a genetic vaccination card in cells. Once those bits of DNA have been inserted into the bacterial chromosome, the cell then makes a little copy of a molecule called RNA, which is orange in this picture, that is an exact replicate of the viral DNA. RNA is a chemical cousin of DNA, and it allows interaction with DNA molecules
that have a matching sequence. So those little bits of RNA from the CRISPR locus associate -- they bind -- to protein called Cas9, which is white in the picture, and form a complex that functions like a sentinel in the cell. It searches through all of the DNA in the cell, to find sites that match the sequences in the bound RNAs. And when those sites are found -- as you can see here, the blue molecule is DNA -- this complex associates with that DNA and allows the Cas9 cleaver to cut up the viral DNA. It makes a very precise break.
So we can think of the Cas9 RNA sentinel complex like a pair of scissors that can cut DNA -- it makes a double-stranded break in the DNA helix. And importantly, this complex is programmable, so it can be programmed to recognize particular DNA sequences, and make a break in the DNA at that site. As I'm going to tell you now, we recognized that that activity could be harnessed for genome engineering, to allow cells to make a very precise change to the DNA at the site where this break was introduced. That's sort of analogous to the way that we use a word-processing program
to fix a typo in a document. The reason we envisioned using the CRISPR system for genome engineering is because cells have the ability to detect broken DNA and repair it. So when a plant or an animal cell detects a double-stranded break in its DNA, it can fix that break, either by pasting together the ends of the broken DNA with a little, tiny change in the sequence of that position, or it can repair the break by integrating a new piece of DNA at the site of the cut. So if we have a way to introduce double-stranded breaks into DNA at precise places, we can trigger cells to repair those breaks,
by either the disruption or incorporation of new genetic information. So if we were able to program the CRISPR technology to make a break in DNA at the position at or near a mutation causing cystic fibrosis, for example, we could trigger cells to repair that mutation. Genome engineering is actually not new, it's been in development since the 1970s. We've had technologies for sequencing DNA, for copying DNA, and even for manipulating DNA. And these technologies were very promising, but the problem was that they were either inefficient, or they were difficult enough to use
that most scientists had not adopted them for use in their own laboratories, or certainly for many clinical applications. So, the opportunity to take a technology like CRISPR and utilize it has appeal, because of its relative simplicity. We can think of older genome engineering technologies as similar to having to rewire your computer each time you want to run a new piece of software, whereas the CRISPR technology is like software for the genome, we can program it easily, using these little bits of RNA. So once a double-stranded break is made in DNA, we can induce repair, and thereby potentially achieve astounding things,
like being able to correct mutations that cause sickle cell anemia or cause Huntington's Disease. I actually think that the first applications of the CRISPR technology are going to happen in the blood, where it's relatively easier to deliver this tool into cells, compared to solid tissues. Right now, a lot of the work that's going on applies to animal models of human disease, such as mice. The technology is being used to make very precise changes that allow us to study the way that these changes in the cell's DNA affect either a tissue or, in this case, an entire organism. Now in this example,
the CRISPR technology was used to disrupt a gene by making a tiny change in the DNA in a gene that is responsible for the black coat color of these mice. Imagine that these white mice differ from their pigmented litter-mates by just a tiny change at one gene in the entire genome, and they're otherwise completely normal. And when we sequence the DNA from these animals, we find that the change in the DNA has occurred at exactly the place where we induced it, using the CRISPR technology. Additional experiments are going on in other animals that are useful for creating models for human disease,
such as monkeys. And here we find that we can use these systems to test the application of this technology in particular tissues, for example, figuring out how to deliver the CRISPR tool into cells. We also want to understand better how to control the way that DNA is repaired after it's cut, and also to figure out how to control and limit any kind of off-target, or unintended effects of using the technology. I think that we will see clinical application of this technology, certainly in adults, within the next 10 years. I think that it's likely that we will see clinical trials
and possibly even approved therapies within that time, which is a very exciting thing to think about. And because of the excitement around this technology, there's a lot of interest in start-up companies that have been founded to commercialize the CRISPR technology, and lots of venture capitalists that have been investing in these companies. But we have to also consider that the CRISPR technology can be used for things like enhancement. Imagine that we could try to engineer humans that have enhanced properties, such as stronger bones, or less susceptibility to cardiovascular disease
or even to have properties that we would consider maybe to be desirable, like a different eye color or to be taller, things like that. "Designer humans," if you will. Right now, the genetic information to understand what types of genes would give rise to these traits is mostly not known. But it's important to know that the CRISPR technology gives us a tool to make such changes, once that knowledge becomes available. This raises a number of ethical questions that we have to carefully consider, and this is why I and my colleagues have called for a global pause
in any clinical application of the CRISPR technology in human embryos, to give us time to really consider all of the various implications of doing so. And actually, there is an important precedent for such a pause from the 1970s, when scientists got together to call for a moratorium on the use of molecular cloning, until the safety of that technology could be tested carefully and validated. So, genome-engineered humans are not with us yet, but this is no longer science fiction. Genome-engineered animals and plants are happening right now. And this puts in front of all of us a huge responsibility,
to consider carefully both the unintended consequences as well as the intended impacts of a scientific breakthrough. Thank you. (Applause) (Applause ends) Bruno Giussani: Jennifer, this is a technology with huge consequences, as you pointed out. Your attitude about asking for a pause or a moratorium or a quarantine is incredibly responsible. There are, of course, the therapeutic results of this, but then there are the un-therapeutic ones and they seem to be the ones gaining traction, particularly in the media.
This is one of the latest issues of The Economist -- "Editing humanity." It's all about genetic enhancement, it's not about therapeutics. What kind of reactions did you get back in March from your colleagues in the science world, when you asked or suggested that we should actually pause this for a moment and think about it? Jennifer Doudna: My colleagues were actually, I think, delighted to have the opportunity to discuss this openly. It's interesting that as I talk to people, my scientific colleagues as well as others, there's a wide variety of viewpoints about this. So clearly it's a topic that needs careful consideration and discussion.
BG: There's a big meeting happening in December that you and your colleagues are calling, together with the National Academy of Sciences and others, what do you hope will come out of the meeting, practically? JD: Well, I hope that we can air the views of many different individuals and stakeholders who want to think about how to use this technology responsibly. It may not be possible to come up with a consensus point of view, but I think we should at least understand what all the issues are as we go forward. BG: Now, colleagues of yours, like George Church, for example, at Harvard,
they say, "Yeah, ethical issues basically are just a question of safety. We test and test and test again, in animals and in labs, and then once we feel it's safe enough, we move on to humans." So that's kind of the other school of thought, that we should actually use this opportunity and really go for it. Is there a possible split happening in the science community about this? I mean, are we going to see some people holding back because they have ethical concerns, and some others just going forward because some countries under-regulate or don't regulate at all? JD: Well, I think with any new technology, especially something like this,
there are going to be a variety of viewpoints, and I think that's perfectly understandable. I think that in the end, this technology will be used for human genome engineering, but I think to do that without careful consideration and discussion of the risks and potential complications would not be responsible. BG: There are a lot of technologies and other fields of science that are developing exponentially, pretty much like yours. I'm thinking about artificial intelligence, autonomous robots and so on. No one seems -- aside from autonomous warfare robots --
nobody seems to have launched a similar discussion in those fields, in calling for a moratorium. Do you think that your discussion may serve as a blueprint for other fields? JD: Well, I think it's hard for scientists to get out of the laboratory. Speaking for myself, it's a little bit uncomfortable to do that. But I do think that being involved in the genesis of this really puts me and my colleagues in a position of responsibility. And I would say that I certainly hope that other technologies will be considered in the same way, just as we would want to consider something that could have implications
in other fields besides biology. BG: Jennifer, thanks for coming to TED. JD: Thank you. (Applause)